

Viktor Köpplin, Jörg Seume, and Florian Herbst

European Drag Reduction and Flow Control Meeting 6 April, 2017, Rome, Italy

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

Leibniz Universität Hannover

Motivation

Method/Validation

Results

Conclusions

Outline

- 1. Motivation
- 2. Method and Validation
- 3. Results
- 4. Conclusions

Herbst 6 April 2017

slide 2 / 23

© Leibniz Universität Hannover 2017

Motivation

Method/Validation

Results

Conclusions

l l Leibniz l o 2 Universität l o o 4 Hannover

Herbst 6 April 2017

slide 3 / 23

© Leibniz Universität Hannover 2017

Riblets in Industrial Applications (e.g. Gas Turbine Engines)

Prospects

- In turbulent boundary layers
- Up to 10% drag reduction for ideal riblets
- Changing potential for varying geometry/ operating point
- Severe Drag increase possible

High- and intermediate pressure compressor

- High Re
- Subsonic flow
- Erosion less severe
- Stationary gas turbines even more appropriate

Reynolds number at cruise of typical mid-thrust mid-range engine

Institute of Turbomachinery and Fluid Dynamics

Investigation of Local Flow Phenomena of Misaligned Riblets in a Turbulent Boundary Layer

Motivation

Method/Validation

Results

Conclusions

Herbst

6 April 2017

slide 4 / 23

© Leibniz Universität Hannover 2017

Estimation of Riblet Potential for a 4.5 Stage Compressor

Relative increase of adiabatic efficiency at design point: approx. 0.2%

Motivation

Method/Validation

Results

Conclusions

Herbst

6 April 2017

slide 6 / 23

Aerodynamic Challenges for the Application in Turbomachinery

Proposed RANS-Model¹

Investigation of Local Flow Phenomena of Misaligned Riblets in a Turbulent Boundary Layer

Motivation

Method/Validation

Results

Conclusions

Ideal and manufactured Riblets

$$\frac{D\omega}{Dt} = 2\gamma s_{ij} s_{ij} - f_{damp} \cdot \beta \omega^2 + \frac{\partial}{\partial x_j} \left[(v + \sigma_\omega v_t) \frac{\partial \omega}{\partial x_j} \right]$$
$$f_{damp} = 1 - A \exp(-\frac{\omega v^2}{500v})$$

Herbst 6 April 2017 slide 7 / 23 Effect of Misalignment

Adapted Pressure
Gradient Effect
calculation

Improved drag increase regime prediction

¹Koepplin V., Herbst F.; Seume JR. (2017): Correlation-Based Riblet Model for Turbomachinery Applications. ASME Journal of Turbomachinery;139(7)

Motivation

Method/Validation

Results

Conclusions

RANS-Predictions¹ of Integral Effect: Compressor Cascade

Relative change of total pressure (profile) loss

$$\omega_{\rm loss} = \frac{p_{\rm tot,in} - p_{\rm tot,out}}{p_{\rm tot,in} - p_{\rm in}}$$

- predicted excellent for aligned Riblets
- deviates for misaligned Riblets
- alternating under- and over-predicition with increasing misalignment

Herbst 6 April 2017

slide 8 / 23

¹Koepplin V., Herbst F.; Seume JR. (2017): Correlation-Based Riblet Model for Turbomachinery Applications. ASME Journal of Turbomachinery;139(7)

Motivation

Method/Validation

Results

Conclusions

Objectives of this Misalignment Study

- Increase quantitative data base for correlation-based RANS-model
- Understand locally relevant flow features to criticize chosen RANSmodeling strategy
- Setup reliable DNS for prediction of Riblet misalignment in turbulent boundary layers

Herbst 6 April 2017

slide 9 / 23

© Leibniz Universität Hannover 2017

Exp. data acc. to: Hage, W. (2004): Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen. PhD Thesis, TU Berlin

Motivation

Method/Validation

Results

Conclusions

Numerical Method and Principal Setup

Setup und Boundary Conditions

- Plane channel flow
- Periodic in stream- and spanwise direction
- No-slip walls at bottom and top
- $Re_{\tau} = 395$ with $Re_{B} = 14000$
- Spatial resolution:

$$-\Delta y^{+} = 0.4 \dots 10$$

$$-\Delta x^+ = 10$$

$$-\Delta z^+=5$$

Flow Solver

- OpenFoam
- Finite Volume
- Spatial discretization: bounded 2nd order TVD scheme
- Time integration: 2nd order Euler backward (implicit)

Herbst

6 April 2017

slide 10 / 23

© Leibniz Universität Hannover 2017

Motivation

Method/Validation

Results

Conclusions

Validation for Smooth Wall at $Re_{\tau} = 395$

All quantities averaged over $t^+ \approx 120$

Reynolds stresses and turbulence kinetic energy balance in (very) good accordance with Moser et al. (1999)

Herbst 6 April 2017 slide 11 / 23

Motivation

Method/Validation

Results

Conclusions

Aligned Riblets: Numerical Setup

Setup und Boundary Conditions

- Ideal trapezoidal Riblets
- Variation of Riblet spacing s⁺
- Riblet height $h^+ = 0.5s^+$
- Riblet tip-angle: $\alpha = 30^{\circ}$
- Body-fitted hexa mesh
- $Re_{\tau} = 395$ with $Re_{B} = 14000$
- $Re_{\tau} = 180$ with $Re_{B} = 5700$

Herbst

6 April 2017

slide 12 / 23

Motivation

Method/Validation

Results

Conclusions

Predicted Drag Reduction of Aligned Riblets

- Excellent prediction of experimental drag reduction (DR) for ${\rm Re}_{\tau}=395$ and
- for adjusted experimental data of $Re_{\tau} = 180$
- Experiments adjusted for Reynolds number according to²

$$\Delta U^{+} = -\left[(2C_{\rm f0})^{-\frac{1}{2}} + (2\kappa)^{-1} \right] \frac{\Delta C_{\rm f}}{C_{\rm f0}}$$

40

¹Exp. data acc. to: Hage, W. (2004): Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen. PhD Thesis, TU Berlin

²Garcıa-Mayoral, R.; Jimenez, J. (2011): Drag Reduction by Riblets. Philos. Trans. R. Soc. A, 369(1940), pp. 1412–1427.

Herbst 6 April 2017 slide 13 / 23

© Leibniz Universität Hannover 2017

Institute of Turbomachinery and Fluid Dynamics

Investigation of Local Flow Phenomena of Misaligned Riblets in a Turbulent Boundary Layer

Motivation

Method/Validation

Results

Conclusions

Herbst

6 April 2017

slide 14 / 23

Misaligned Riblets: Numerical Setup

Setup und Boundary Conditions

- Ideal trapezoidal riblets with $s^+ = 17$
- Riblet height $h^+ = 0.5s^+$
- Riblet tip-angle: $\alpha = 30^{\circ}$
- Body-fitted hexa mesh
- Variation of mean flow angle $\alpha = 0^{\circ}$; 5° ; 30° ; 45°
- $Re_{\tau} = 180$ with $Re_{B} = 5700$
- Spatial resolution (33 million nodes):

$$-\Delta y^{+} = 0.4 \dots 10$$

$$-\Delta x^+ = \Delta z^+ = 1$$

• Averaging for $t^+ = 25$

Motivation

Method/Validation

Results

Conclusions

Integral Effect on Wall Friction

$$\left. \frac{\Delta \tau}{\tau_{\text{smooth}}} \right|_{0^{\circ}} = -7.73\%$$

$$\left. \frac{\Delta \tau}{\tau_{\text{smooth}}} \right|_{5^{\circ}} = -6.28\%$$

$$\left. \frac{\Delta \tau}{\tau_{\text{smooth}}} \right|_{30^{\circ}} = -1.21\%$$

$$\frac{\Delta \tau}{\tau_{\text{smooth}}}\bigg|_{45^{\circ}} = +37.47\%$$

- Principal trend captured
- Slightly under-predicted for 30°
- Significantly over-predicted for 45°
- Notable coincidence with RANS predictions of compressor cascade

Herbst
6 April 2017

slide 15 / 23

Exp. data acc. to: Hage, W. (2004): Zur Widerstandsverminderung von dreidimensionalen Riblet-Strukturen und anderen Oberflächen. PhD Thesis, TU Berlin

Motivation

Method/Validation

Results

Conclusions

Herbst

6 April 2017

slide 17 / 23

Mean Flow Angle α of the Wall-Parallel Components

- Prescribed misalignment angle a attained in main flow
- Near-wall reduction of a
 - → Increased shear
- Opposite flow direction in Riblet valley
- All curves intersect at one wall-normal point: $y^+ = 1.02$
 - → Virtual origin of riblet surface (red dashed line)

Motivation

Method/Validation

Results

Conclusions

Cross-Flow Streamlines of Mean Flow

Herbst

6 April 2017

slide 18 / 23

© Leibniz Universität Hannover 2017

Motivation

Method/Validation

Results

Conclusions

l l Leibniz l o 2 Universität l o o 4 Hannover

6 April 2017 slide 19 / 23

Herbst

© Leibniz Universität Hannover 2017

Turbulent Kinetic Energy Balance

Motivation

Method/Validation

Results

Conclusions

l l Leibniz l 0 2 Universität l 0 0 4 Hannover

Herbst 6 April 2017 slide 20 / 23

Wall-Normal Profiles at Mid-Valley

Turbulent Kinetic Energy

- Maxima of production and dissipation move closer to surface for increasing misalignment a
- Production P_k increases with a
 - → Effect of shear?
- Dissipation doubles from 30° to 45°
- For drag-neutral case (30°) P_k and k nearly coincide with smooth-case...
- ...dissipation not
 - → Dissipation most sensitive quantity

Institute of Turbomachinery and Fluid Dynamics

Investigation of Local Flow Phenomena of Misaligned Riblets in a Turbulent Boundary Layer

Motivation

Method/Validation

Results

Conclusions

Leibniz Log 2 Universität Log 4 Hannover

Herbst

6 April 2017

slide 21 / 23

Reynolds Normal Stresses: Resolved vs. Ideal Boussinesq

Note: wall-parallel stresses transformed acc. to α

- Resolved $\overline{w'w'}$ doubles from 30° to 45°
- Other stresses increase but relatively less
- Boussinesq captures neither basic anisotropy and its change
- nor the peak positions

Motivation

Method/Validation

Results

Conclusions

- DNS results successfully validated
- Misalignment effect slightly deviates from oil channel experiment but correlates with cascade experiments
- Misaligned Riblets turn the mean flow in the wall-near region due to induced cross-flow vortices in Riblet valleys
- Increasing misalignment increases maxima of turbulent quantities and shifts them closer to wall
- Turbulent kinetic energy and its production correlate with drag change
- Dissipation does not
- Ideal Boussinesq Reynolds stresses do not capture anisotropy

Outlook

- Re-assess RANS model regarding
 - turning of mean flow in wall-near region
 - relevance of anisotropy
 - empiric correlations for dissipation
- Evaluation of local loss contributions (viscous vs. turbulent stresses)
- Compressor rig validation (in preparation)

Herbst 6 April 2017 slide 22 / 23

Thank you for your Attention!

Prof. Dr. Seume

Institute of Turbomachinery and Fluid Dynamics

Leibniz Universität Hannover